Monthly Archives: November 2017


Reconstruction of developmental landscapes by optimal-transport analysis of single-cell gene expression sheds light on cellular reprogramming.

Our next meeting will be at 11:00 on Nov 7th, in room 4160 of the Discovery building. Our Selected paper is Reconstruction of developmental landscapes by optimal-transport analysis of single-cell gene expression sheds light on cellular reprogramming.
The abstract is as follows.

Understanding the molecular programs that guide cellular differentiation during development is a major goal of modern biology. Here, we introduce an approach, WADDINGTON-OT, based on the mathematics of optimal transport, for inferring developmental landscapes, probabilistic cellular fates and dynamic trajectories from large-scale single-cell RNA-seq (scRNA-seq) data collected along a time course. We demonstrate the power of WADDINGTON-OT by applying the approach to study 65,781 scRNA-seq profiles collected at 10 time points over 16 days during reprogramming of fibroblasts to iPSCs. We construct a high-resolution map of reprogramming that rediscovers known features; uncovers new alternative cell fates including neural- and placental-like cells; predicts the origin and fate of any cell class; highlights senescent-like cells that may support reprogramming through paracrine signaling; and implicates regulatory models in particular trajectories. Of these findings, we highlight Obox6, which we experimentally show enhances reprogramming efficiency. Our approach provides a general framework for investigating cellular differentiation.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.