sequence_to_expression


Discovering sparse transcription factor codes for cell states and state transitions during development

Our next meeting will be at 3:00 on April 28th, in room 4160 of the Discovery building. Our Selected paper is Discovering sparse transcription factor codes for cell states and state transitions during development.
The abstract is as follows.

Computational analysis of gene expression to determine both the sequence of lineage choices made by multipotent cells and to identify the genes influencing these decisions is challenging. Here we discover a pattern in the expression levels of a sparse subset of genes among cell types in B- and T-cell developmental lineages that correlates with developmental topologies. We develop a statistical framework using this pattern to simultaneously infer lineage transitions and the genes that determine these relationships. We use this technique to reconstruct the early hematopoietic and intestinal developmental trees. We extend this framework to analyze single-cell RNA-seq data from early human cortical development, inferring a neocortical-hindbrain split in early progenitor cells and the key genes that could control this lineage decision. Our work allows us to simultaneously infer both the identity and lineage of cell types as well as a small set of key genes whose expression patterns reflect these relationships.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.