Affinity regression predicts the recognition code of nucleic acid–binding proteins

Our next meeting will be at 3:00 on February 10th, in room 4160 of the Discovery building. Our Selected paper is Affinity regression predicts the recognition code of nucleic acid–binding proteins.
The abstract is as follows.

Predicting the affinity profiles of nucleic acid–binding proteins directly from the protein sequence is a challenging problem. We present a statistical approach for learning the recognition code of a family of transcription factors or RNA-binding proteins (RBPs) from high-throughput binding data. Our method, called affinity regression, trains on protein binding microarray (PBM) or RNAcompete data to learn an interaction model between proteins and nucleic acids using only protein domain and probe sequences as inputs. When trained on mouse homeodomain PBM profiles, our model correctly identifies residues that confer DNA-binding specificity and accurately predicts binding motifs for an independent set of divergent homeodomains. Similarly, when trained on RNAcompete profiles for diverse RBPs, our model correctly predicts the binding affinities of held-out proteins and identifies key RNA-binding residues, despite the high level of sequence divergence across RBPs. We expect that the method will be broadly applicable to modeling and predicting paired macromolecular interactions in settings where high-throughput affinity data are available.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.