causal_networks


Learning causal networks with latent variables from multivariate information in genomic data

Our next meeting will be at 11:00 on Dec 5th, in room 4160 of the Discovery building. Our Selected paper is Learning causal networks with latent variables from multivariate information in genomic data.
The abstract is as follows.

Learning causal networks from large-scale genomic data remains challenging in absence of time series or controlled perturbation experiments. We report an information- theoretic method which learns a large class of causal or non-causal graphical models from purely observational data, while including the effects of unobserved latent variables, commonly found in many genomic datasets. Starting from a complete graph, the method iteratively removes dispensable edges, by uncovering significant information contributions from indirect paths, and assesses edge-specific confidences from randomization of available data. The remaining edges are then oriented based on the signature of causality in observational data. The approach and associated algorithm, miic, outperform earlier methods on a broad range of benchmark networks. Causal network reconstructions are presented at different biological size and time scales, from gene regulation in single cells to whole genome duplication in tumor development as well as long term evolution of vertebrates. Miic is publicly available at https://github.com/miicTeam/MIIC.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.


Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling

Our next meeting will be at 2:30 on August 4th, in room 4160 of the Discovery building. Our Selected paper is Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling.
The abstract is as follows.

Signaling networks downstream of receptor tyrosine kinases are among the most extensively studied biological networks, but new approaches are needed to elucidate causal relationships between network components and understand how such relationships are influenced by biological context and disease. Here, we investigate the context specificity of signaling networks within a causal conceptual framework using reverse-phase protein array time-course assays and network analysis approaches. We focus on a well-defined set of signaling proteins profiled under inhibition with five kinase inhibitors in 32 contexts: four breast cancer cell lines (MCF7, UACC812, BT20, and BT549) under eight stimulus conditions. The data, spanning multiple pathways and comprising ~70,000 phosphoprotein and ~260,000 protein measurements, provide a wealth of testable, context-specific hypotheses, several of which we experimentally validate. Furthermore, the data provide a unique resource for computational methods development, permitting empirical assessment of causal network learning in a complex, mammalian setting.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.


Predicting Causal Relationships from Biological Data: Applying Automated Casual Discovery on Mass Cytometry Data of Human Immune Cells

Our next meeting will be at 3:00 on June 09th, in room 4160 of the Discovery building. Our Selected paper is Predicting Causal Relationships from Biological Data: Applying Automated Casual Discovery on Mass Cytometry Data of Human Immune Cells.
The abstract is as follows.

Learning the causal relationships that define a molecular system allows us to predict how the system will respond to different interventions. Distinguishing causality from mere association typically requires randomized experiments. Methods for automated causal discovery from limited experiments exist, but have so far rarely been tested in systems biology applications. In this work, we apply state-of-the art causal discovery methods on a large collection of public mass cytometry data sets, measuring intra-cellular signaling proteins of the human immune system and their response to several perturbations. We show how different experimental conditions can be used to facilitate causal discovery, and apply two fundamental methods that produce context-specific causal predictions. Causal predictions were reproducible across independent data sets from two different studies, but often disagree with the KEGG pathway databases. Within this context, we discuss the caveats we need to overcome for automated causal discovery to become a part of the routine data analysis in systems biology.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.


Causal Mechanistic Regulatory Network for Glioblastoma Deciphered Using Systems Genetics Network Analysis

Our next meeting will be at 3:00 on September 26th, in room 3160 of the Discovery building. Our Selected paper is Causal Mechanistic Regulatory Network for Glioblastoma Deciphered Using Systems Genetics Network Analysis.
The abstract is as follows.

We developed the transcription factor (TF)-target gene database and the Systems Genetics Network Analysis (SYGNAL) pipeline to decipher transcriptional regulatory networks from multi-omic and clinical patient data, and we applied these tools to 422 patients with glioblastoma multiforme (GBM). The resulting gbmSYGNAL network predicted 112 somatically mutated genes or pathways that act through 74 TFs and 37 microRNAs (miRNAs) (67 not previously associated with GBM) to dysregulate 237 distinct co-regulated gene modules associated with patient survival or oncogenic processes. The regulatory predictions were associated to cancer phenotypes using CRISPR-Cas9 and small RNA perturbation studies and also demonstrated GBM specificity. Two pairwise combinations (ETV6-NFKB1 and romidepsin-miR-486-3p) predicted by the gbmSYGNAL network had synergistic anti-proliferative effects. Finally, the network revealed that mutations in NF1 and PIK3CA modulate IRF1-mediated regulation of MHC class I antigen processing and presentation genes to increase tumor lymphocyte infiltration and worsen prognosis. Importantly, SYGNAL is widely applicable for integrating genomic and transcriptomic measurements from other human cohorts.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.


Predicting tissue specific transcription factor binding sites

Our selection for our meeting on the 16th of May is Predicting tissue specific transcription factor binding sites. We will meet as usual in room 3160 of the Discovery building at 12:30 PM. The abstract is as follows.

Background

Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks.

Results

We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation.

Conclusions

We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation.

We look forward to seeing all who can attend and feel free to begin our discussion in the comments section below.


Inferring causal molecular networks: empirical assessment through a community-based method.

For our next Journal Club Meeting we will read Inferring causal molecular networks: empirical assessment through a community-based method.. The abstract is as follows:

It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.

We look forward to seeing all who can attend and feel free to extend our discussion into the comments section below.