Genetic_networks


Network enhancement as a general method to denoise weighted biological networks

Our next meeting will be at 1pm on Dec 10th, in room 4160 of the Discovery building. Our Selected paper is Network enhancement as a general method to denoise weighted biological networks.
The abstract is as follows.

Networks are ubiquitous in biology where they encode connectivity patterns at all scales of organization, from molecular to the biome. However, biological networks are noisy due to the limitations of measurement technology and inherent natural variation, which can hamper discovery of network patterns and dynamics. We propose Network Enhancement (NE), a method for improving the signal-to-noise ratio of undirected, weighted networks. NE uses a doubly stochastic matrix operator that induces sparsity and provides a closed-form solution that increases spectral eigengap of the input network. As a result, NE removes weak edges, enhances real connections, and leads to better downstream performance. Experiments show that NE improves gene–function prediction by denoising tissue-specific interaction networks, alleviates interpretation of noisy Hi-C contact maps from the human genome, and boosts fine-grained identification accuracy of species. Our results indicate that NE is widely applicable for denoising biological networks.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.


NetSig: network-based discovery from cancer genomes

Our next meeting will be at 2pm on Jan 29th, in room 4160 of the Discovery building. Our Selected paper is NetSig: network-based discovery from cancer genomes.
The abstract is as follows.

Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (NetSig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that NetSig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified. Our study presents a scalable integrated computational and experimental workflow to expand discovery from cancer genomes.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.


Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering

Our next meeting will be at 12:30 on September 12th, in room 3160 of the Discovery building. Our Selected paper is Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering.
The abstract is as follows.

Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.


Tensor decomposition for multiple-tissue gene expression experiments

Our next meeting will be at 12:30 on August 15th, in room 3160 of the Discovery building. Our Selected paper is Tensor decomposition for multiple-tissue gene expression experiments.
The abstract is as follows.

Genome-wide association studies of gene expression traits and other cellular phenotypes have successfully identified links between genetic variation and biological processes. The majority of discoveries have uncovered cis–expression quantitative trait locus (eQTL) effects via mass univariate testing of SNPs against gene expression in single tissues. Here we present a Bayesian method for multiple-tissue experiments focusing on uncovering gene networks linked to genetic variation. Our method decomposes the 3D array (or tensor) of gene expression measurements into a set of latent components. We identify sparse gene networks that can then be tested for association against genetic variation across the genome. We apply our method to a data set of 845 individuals from the TwinsUK cohort with gene expression measured via RNA-seq analysis in adipose, lymphoblastoid cell lines (LCLs) and skin. We uncover several gene networks with a genetic basis and clear biological and statistical significance. Extensions of this approach will allow integration of different omics, environmental and phenotypic data sets.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.