Time Series


RNA velocity of single cells

Our next meeting will be at 1pm on Nov 12th, in room 4160 of the Discovery building. Our Selected paper is RNA velocity of single cells.
The abstract is as follows.

RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and throughput. However, this approach captures only a static snapshot at a point in time, posing a challenge for the analysis of time-resolved phenomena such as embryogenesis or tissue regeneration. Here we show that RNA velocity—the time derivative of the gene expression state—can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future state of individual cells on a timescale of hours. We validate its accuracy in the neural crest lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the branching lineage tree of the developing mouse hippocampus, and examine the kinetics of transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of developmental lineages and cellular dynamics, particularly in humans.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.


Clustering gene expression time series data using an infinite Gaussian process mixture model

Our next meeting will be at 2pm on Feb 12th, in room 4160 of the Discovery building. Our Selected paper is Clustering gene expression time series data using an infinite Gaussian process mixture model.
.
The abstract is as follows.

Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP), which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.


Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling

Our next meeting will be at 2:30 on August 4th, in room 4160 of the Discovery building. Our Selected paper is Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling.
The abstract is as follows.

Signaling networks downstream of receptor tyrosine kinases are among the most extensively studied biological networks, but new approaches are needed to elucidate causal relationships between network components and understand how such relationships are influenced by biological context and disease. Here, we investigate the context specificity of signaling networks within a causal conceptual framework using reverse-phase protein array time-course assays and network analysis approaches. We focus on a well-defined set of signaling proteins profiled under inhibition with five kinase inhibitors in 32 contexts: four breast cancer cell lines (MCF7, UACC812, BT20, and BT549) under eight stimulus conditions. The data, spanning multiple pathways and comprising ~70,000 phosphoprotein and ~260,000 protein measurements, provide a wealth of testable, context-specific hypotheses, several of which we experimentally validate. Furthermore, the data provide a unique resource for computational methods development, permitting empirical assessment of causal network learning in a complex, mammalian setting.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.


Selecting the most appropriate time points to profile in high-throughpsut studies

Our next meeting will be at 3:00 on May 26th, in room 4160 of the Discovery building. Our Selected paper is Selecting the most appropriate time points to profile in high-throughpsut studies.
The abstract is as follows.

Biological systems are increasingly being studied by high throughput profiling of molecular data over time. Determining the set of time points to sample in studies that profile several different types of molecular data is still challenging. Here we present the Time Point Selection (TPS) method that solves this combinatorial problem in a principled and practical way. TPS utilizes expression data from a small set of genes sampled at a high rate. As we show by applying TPS to study mouse lung development, the points selected by TPS can be used to reconstruct an accurate representation for the expression values of the non selected points. Further, even though the selection is only based on gene expression, these points are also appropriate for representing a much larger set of protein, miRNA and DNA methylation changes over time. TPS can thus serve as a key design strategy for high throughput time series experiments.

We welcome all who can join us for this discussion. Feel free to begin that discussion in the comments section below.