epigenomes


Epigenomic Co-localization and Co-evolution Reveal a Key Role for 5hmC as a Communication Hub in the Chromatin Network of ESCs

Our selected paper for this week is titled Epigenomic Co-localization and Co-evolution Reveal a Key Role for 5hmC as a Communication Hub in the Chromatin Network of ESCs, from Cell.The abstract is as follows:

Epigenetic communication through histone and cytosine modifications is essential for gene regula- tion and cell identity. Here, we propose a framework that is based on a chromatin communication model to get insight on the function of epigenetic modifica- tions in ESCs. The epigenetic communication network was inferred from genome-wide location data plus extensive manual annotation. Notably, we found that 5-hydroxymethylcytosine (5hmC) is the most-influential hub of this network, connecting DNA demethylation to nucleosome remodeling complexes and to key transcription factors of plurip- otency. Moreover, an evolutionary analysis revealed a central role of 5hmC in the co-evolution of chro- matin-related proteins. Further analysis of regions where 5hmC co-localizes with specific interactors shows that each interaction points to chromatin remodeling, stemness, differentiation, or meta- bolism. Our results highlight the importance of cyto- sine modifications in the epigenetic communication of ESCs.

Feel free to begin our discussion in the comments section below. Our meeting will be at 12:30 PM in room 3160 of the Discovery building on July 18th.


04.15.15

Integrative analysis of 111 reference human epigenomes

Roadmap Epigenomics Consortium, Anshul Kundaje, et al.

Abstract:
The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.